ID:164509

段孟欢

高级JAVA工程师

  • 公司信息:
  • 筑荣 A轮
  • 工作经验:
  • 3年
  • 兼职日薪:
  • 600元/8小时
  • 兼职时间:
  • 下班后
  • 周六
  • 所在区域:
  • 上海
  • 闵行

技术能力

1.Elasticsearch,Linux,
2.SpringBoot 开发框架;

3.熟悉 Spring、Spring MVC、Mybatis、Hibernate 等常用开源框架;

4.熟练应用 mysql,并具备 SQL 编写及优化能力;

项目经验

模拟过京东商城,搜索模块就是使用的Elasticsearch
Getting Started
Elasticsearch is a highly scalable open-source full-text search and analytics engine. It allows you to store, search, and analyze big volumes of data quickly and in near real time. It is generally used as the underlying engine/technology that powers applications that have complex search features and requirements.

Here are a few sample use-cases that Elasticsearch could be used for:

You run an online web store where you allow your customers to search for products that you sell. In this case, you can use Elasticsearch to store your entire product catalog and inventory and provide search and autocomplete suggestions for them.
You want to collect log or transaction data and you want to analyze and mine this data to look for trends, statistics, summarizations, or anomalies. In this case, you can use Logstash (part of the Elasticsearch/Logstash/Kibana stack) to collect, aggregate, and parse your data, and then have Logstash feed this data into Elasticsearch. Once the data is in Elasticsearch, you can run searches and aggregations to mine any information that is of interest to you.
You run a price alerting platform which allows price-savvy customers to specify a rule like "I am interested in buying a specific electronic gadget and I want to be notified if the price of gadget falls below $X from any vendor within the next month". In this case you can scrape vendor prices, push them into Elasticsearch and use its reverse-search (Percolator) capability to match price movements against customer queries and eventually push the alerts out to the customer once matches are found.
You have analytics/business-intelligence needs and want to quickly investigate, analyze, visualize, and ask ad-hoc questions on a lot of data (think millions or billions of records). In this case, you can use Elasticsearch to store your data and then use Kibana (part of the Elasticsearch/Logstash/Kibana stack) to build custom dashboards t

信用行为

  • 接单
    0
  • 评价
    0
  • 收藏
    0
微信扫码,建群沟通

发布任务

企业点击发布任务,工程师会在任务下报名,招聘专员也会在1小时内与您联系,1小时内精准确定人才

微信接收人才推送

关注猿急送微信平台,接收实时人才推送

接收人才推送
联系需求方端客服
联系需求方端客服