基本信息

案例ID:157135

技术顾问:鲍勃 - 1年经验 - 旷视科技

联系沟通

微信扫码,建群沟通

项目名称:发表论文

所属行业:人工智能 - 其他

->查看更多案例

案例介绍

Personalized recommendation systems predict potential demand by analyzing user preferences. Generally, user feedback information is inferred from implicit feedback or explicit feedback. Nevertheless, feedback can be contaminated by user's mis-operations or malicious operations, and may thus lead to incorrect results. We propose a novel Multi-feedback pairwise ranking method via Adversarial training (AT-MPR) for recommender to enhance the robustness and overall performance in the event of rating pollution. The MPR method extends Bayesian personalized ranking (BPR) to cover three types of feedback: positive, negative, and unobserved. It obtains user preferences in a probabilistic way through multiple feedbacks at different levels. To reduce the impact of feedback noise, we train an MPR objective function using minimax adversarial training.

相似案例推荐

其他人才的相似案例推荐

发布任务

企业点击发布任务,工程师会在任务下报名,招聘专员也会在1小时内与您联系,1小时内精准确定人才

微信接收人才推送

关注猿急送微信平台,接收实时人才推送

接收人才推送
联系需求方端客服
联系需求方端客服